
Yannick Forster

Théo Winterhalter

Goals

Ensure you are familiar enough with one proof assistant (Rocq) so that you can

• learn other proof assistants or become an expert Rocq user via self study

We also cover meta-theory, in particular dependent type theory (more in PRFSYS)

Important information on the course webpage https://mpri-prfa.github.io/

Organisation

8×2 lectures

Fridays 10:45—11:45

n on 14 Nov: we start at 9:45

Mondays 09:45—11:45

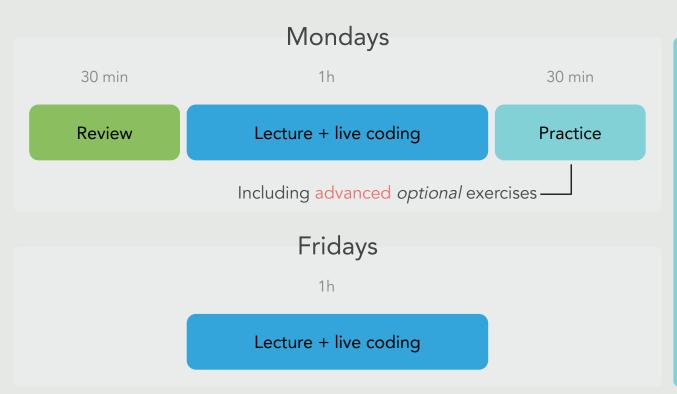
Self-practice during the week(end)

Teachers

Yannick Forster

Théo Winterhalter

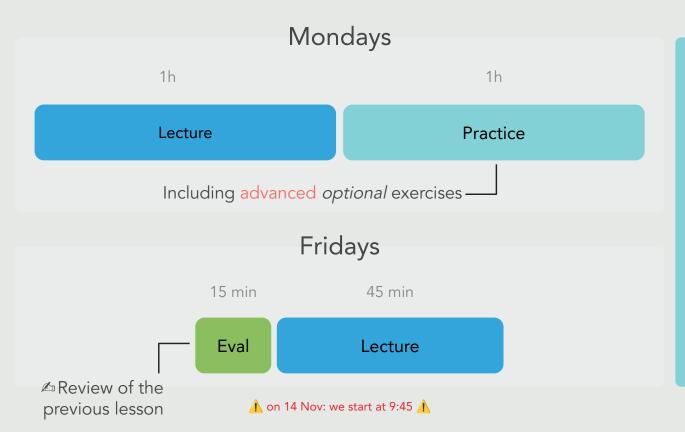
Project


One big Rocq exercise with files to complete and a report to write

3h exam

you may only bring one handwritten A4 page (both sides)

Organisation



Practice is essential because proving is programming

Every part of this course tries to help you practice:

- Practical lectures with live coding
- Practice after the lecture
- Practice at home
- Practice during the project
- Self-evaluation

Organisation

Practice is essential because proving is programming

Every part of this course tries to help you practice:

- Practical lectures with live coding
- Practice after the lecture
- Practice at home
- Practice during the project
- Self-evaluation

Keeping in touch

Join the course's Discord server send us an email to get the link

Discuss exercises, the project, other proof assistants...

We'll post about internships too!

Frequently asked questions will be added to... the FAQ

Keeping in touch

Join the course's Discord server https://discord.gg/tPWWysfCT3

Discuss exercises, the project, other proof assistants...

We'll post about internships too!

Frequently asked questions will be added to... the FAQ

Useful resources

Rocq official website rocq-prover.org

Links to everything you may need related to Rocq

Rocq 9.0 documentation rocq-prover.org/doc/V9.0.0/refman/

Tactic index, command index and more...

Rocq discourse discourse.rocq-prover.org

Forum for announcements and questions available in several languages

Rocq Zulip
rocq-prover.zulipchat.com

Chat where most of Rocq discussions happen nowadays

Outline of the course

Subject to change The course webpage is authoritative

19, 22 Sept. Intro.

26, 29 Sept. Inductive types.

3, 6 Oct. Proof terms and meta-theory.

10, 13 Oct. Mathematical modelling. Automation.

17, 20 Oct. Advanced elimination / induction.

24 Oct., 3 Nov. Tactics and meta-programming.

7, 14 Nov. Equality. 1 on 14 Nov: we start at 9:45

17, 21 Nov. Dependent functional programming.

Important dates

early Oct. Project handout

mid Nov. Project deadline

Nov. or Dec. Exam

Presentation round

Who are you?

Have you seen functional programming before?

Did you use a proof assistant before?

Past and planned internships?

Did you register?

framaforms.org/registration-for-mpri-course-prfa-2025-1753430092

Presentation round

Who are you?

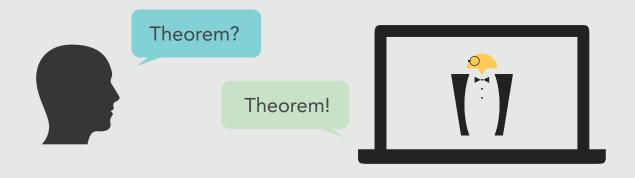
Have you seen functional programming before?

Did you use a proof assistant before?

Past and planned internships?

Did you register?

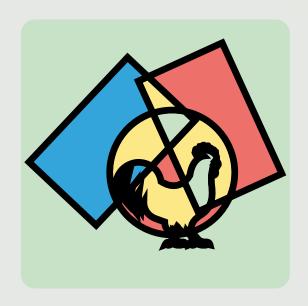
framaforms.org/registration-for-mpri-course-prfa-2025-1753430092


Today

Short introduction to proof assistants

Getting acquainted with Rocq

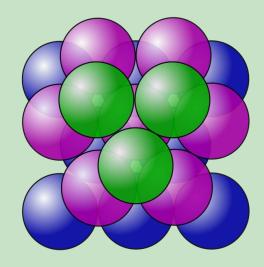
Proving things in propositional logic


What is a proof assistant?

A piece of software for stating and proving mathematical theorems

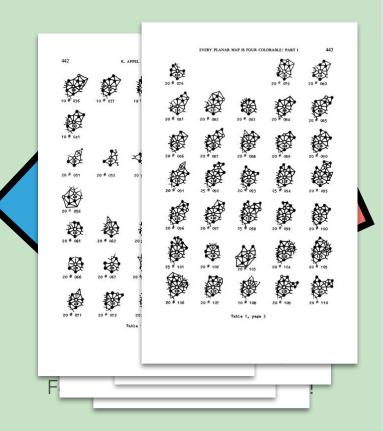
It helps you build proofs interactively by giving you feedback, inferring missing information, and, crucially, checking proofs!

Why a proof assistant?

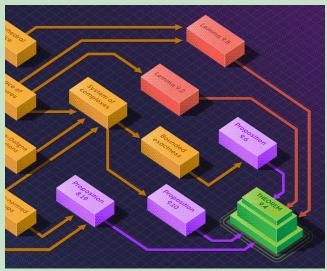


Mathematics

Program verification


Kepler conjecture

Source: wikipedia


1611	Conjecture by Johannes Kepler
1998	Proof by Tom Hales 300 pages, 400k lines of code
1999	12 reviewers, 99% certain
	Continued reviewing, still 99% certain
2005	Published in Annals of Mathematics, "without complete certification from the referees"
	Formal proof project in Isabelle and HOL light "Flyspeck"
2017	Published formal proof in Forum of Mathematics

Four colour theorem

1852	Conjecture by Francis Guthrie
1879	Initial proof by Alfred Kempe
1890	Percy Heawood finds a mistake (5 colour theorem)
1976	Proof by Kenneth Appel and Wolfgang Haken Proof idea: find an "unavoidable", "reducible" set of configurations Reducibility: Checked by computer, took 2 days Unavoidability: 400 pages of microfiche, checked manually by Appel, Haken, and Haken's teenage daughter Dorothea Blostein
1981	Mistakes found by Master's student but fixed
2004	Proof in Rocq by Georges Gonthier with Benjamin Werner

The liquid tensor experiment

Samuel Velasco/Quanta Magazine; Johan Commelin

https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/

- 2019 July: Scholze works out proof of central theorem of Scholze-Clausen liquid mathematics, mainly in his head
- 2019 Proof is written up, but Scholze is unsure about parts
- 2020 Scholze writes post on Kevin Buzzard's blog about "liquid tensor experiment", lead by Johan Commelin: A mechanisation of the proof in Lean

 Working mode: Commelin works on the main proof, technical lemmas are outsourced to community via online chat
- 2021 May: Main argument mechanised
- 2022 July 14: complete proof mechanised

BusyBeaver(5)

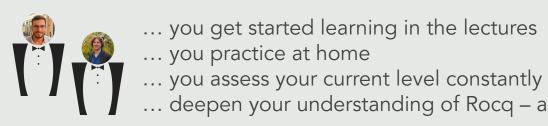
https://www.quantamagazine.org/amateur-mathematicians-find-fifth-busy-beaver-turing-machine-20240702

https://www.lemonde.fr/sciences/article/2024/07/17/mathematiques-le-defi-du-castor-affaire-resolu 6251337 1650684.html

- 1962 Tibor Radó introduces "The busy beaver game": BB(n) is the maximal number of steps a Turing machine with n states can take
- 1966 Allen Brady discovers 4 state machine taking 107 steps
- But there are 17 trillion possible 5-state Turing machines...
- 1989 Heiner Marxen and Jürgen Buntrock find 5-state machine taking 47,176,870 steps
- 2020 Scott Aaronson conjectures BB(5) = 47,176,870
- 2021 Busy beaver challenge started by Tristan Stérin
- 2024 Rocq proof of BB(5) = 47,176,870 by anonymous contributors

Compiling 1 million random C programs will result in miscompilation unless Optimisations are disabled Or the compiler is formally verified John Regehr

CompCert: Fully verified C compiler with optimisations


More verified software: CakeML, sel4, FiatCrypto, Google boring SSL, ...

Proof assistants can help when...

- ... proofs are too big to be reviewed
- ... proofs rely on complicated computer programs
- ... proofs are too complicated to be trusted by their authors
- ... proofs are contributed by anonymous hobbyist mathematicians
- ... computer programs are too complicated to be trusted
- ... students want to develop a deeper understanding what is a proof

We can help...

- ... deepen your understanding of Rocq advanced exercises for all levels

Proving is programming: This course will take you more time than others!

Proof assistants can help when...

- ... proofs are too big to be reviewed
- ... proofs rely on complicated computer programs
- ... proofs are too complicated to be trusted by their authors
- ... proofs are contributed by anonymous hobbyist mathematicians
- ... computer programs are too complicated to be trusted
- ... students want to develop a deeper understanding what is a proof

We can help...

- ... you to get started learning in the lectures
- ... you to practice at home
- ... you to assess your current level constantly
- ... deepen your understanding of Rocq advanced exercises for all levels

Proving is programming: This course will take you more time than others!

Why Rocq?

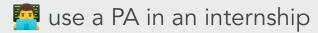
All proof assistants are beautiful!

But we have 8 x 3 hours to teach you

Option 1:

Reach limited proficiency in several proof assistant without understanding concepts deeply





Goals

learn other proof assistants or become an expert PA user via self study

nultimately use or study proof assistants as part of a PhD

Why Rocq?

All proof assistants are beautiful!

But we have 8 x 3 hours to teach you

Option 1:

Reach limited proficiency in several proof assistant without understanding concepts deeply

Option 2:

Reach very good proficiency in one proof assistant, be able to learn others on your own

Now

Live-coding with Rocq

+

Practice